翻訳と辞書
Words near each other
・ Neumann (crater)
・ Neumann boundary condition
・ Neumann International
・ Neumann lines
・ Neumann Palace
・ Neumann Peak
・ Neumann polynomial
・ Neumann series
・ Neumann U47
・ Neumann University
・ Neumann's grass rat
・ Neumann's law
・ Neumann's starling
・ Neumann's warbler
・ Neumann–Dirichlet method
Neumann–Neumann methods
・ Neumann–Poincaré operator
・ Neuman–Stubblebine protocol
・ Neumark
・ Neumark (disambiguation)
・ Neumark (surname)
・ Neumark, Saxony
・ Neumark, Thuringia
・ Neumarkets
・ Neumarkt
・ Neumarkt (district)
・ Neumarkt (Dresden)
・ Neumarkt (KVB)
・ Neumarkt (Oberpfalz) station
・ Neumarkt am Wallersee


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Neumann–Neumann methods : ウィキペディア英語版
Neumann–Neumann methods
In mathematics, Neumann–Neumann methods are domain decomposition preconditioners named so because they solve a Neumann problem on each subdomain on both sides of the interface between the subdomains.〔A. Klawonn and O. B. Widlund, ''FETI and Neumann–Neumann iterative substructuring methods: connections and new results'', Comm. Pure Appl. Math., 54 (2001), pp. 57–90.〕 Just like all domain decomposition methods, so that the number of iterations does not grow with the number of subdomains, Neumann–Neumann methods require the solution of a coarse problem to provide global communication. The balancing domain decomposition is a Neumann–Neumann method with a special kind of coarse problem.
More specifically, consider a domain Ω, on which we wish to solve the Poisson equation
:-\Delta u = f, \qquad u|_ = 0
for some function ''f''. Split the domain into two non-overlapping subdomains Ω1 and Ω2 with common boundary Γ and let ''u''1 and ''u''2 be the values of ''u'' in each subdomain. At the interface between the two subdomains, the two solutions must satisfy the matching conditions
:u_1 = u_2, \qquad \partial_nu_1 = \partial_nu_2
where ''n'' is the unit normal vector to Γ.
An iterative method for approximating each ui satisfying the matching conditions is to first solve the decoupled problems (i=1,2)
:-\Delta u_i^ = f_i, \qquad u_i^|_ = 0, \quad u^_i|_\Gamma = \lambda^
for some function λ(k) on Γ. We then solve the two Neumann problems
:-\Delta\psi_i^ = 0, \qquad \psi_i^|_ = 0, \quad \partial_n\psi_i^ = \partial_nu_1^ - \partial_nu_2^.
We then obtain the next iterate by setting
:\lambda^ = \lambda^ - \omega(\theta_1\psi_1^|_\Gamma - \theta_2\psi_2^|_\Gamma)
for some parameters ω, θ1 and θ2.
This procedure can be viewed as a Richardson iteration for the iterative solution of the equations arising from the Schur complement method.〔A. Quarteroni and A. Valli, ''Domain Decomposition Methods for Partial Differential Equations'', Oxford Science Publications 1999.〕
This continuous iteration can be discretized by the finite element method and then solved—in parallel—on a computer. The extension to more subdomains is straightforward, but using this method as stated as a preconditioner for the Schur complement system is not scalable with the number of subdomains; hence the need for a global coarse solve.
==See also==

* Neumann–Dirichlet method

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Neumann–Neumann methods」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.